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NOMENCLATURE 

F, nondimensional velocity variable; 
Gr,, Grashof number ; 
SC, Schmidt number; 
Sk Sherwood number ; 

Y&0 mole fraction, effusing component, at plate 
surface. 

Greek symbols 

?T 
nondimensional concentration variable; 

% nondimensional similarity independent variable. 

1. I~O~U~O~ 

IN THE course of a recent study by this author cl], which 
demonstrated the viability of using analog computers in 
certain boundary layer and convection work, it was disco- 
vered that results in the paper of Bandrowski and Rybski [2] 
are in error. The purpose of this short communication is to 
give the correct results, obtained by high-speed analog 
computation, for the second orientation in [2-J, i.e. a 
downw~d-fa~ng horizontal plate. It also serves to draw 
further attention to the fact that an analog computer is ideally 
suited to effective solution of problems of this type, a matter 
which appears to have been largely overlooked. 

2. CORRECl-EDRf.SULTS 
The problem referred to reduces to the solution of the 

equations 

5fjV’ + 3Fdi’ 3 0 

-equations (51) and (52) of [2] - subject to the conditions 
at i = 0, cfi(0) = 1; F’(0) = 0; 

F(0) = ; $- @CO) 
- A0 

and for ?-+ co, &j)+O; &j)+O; P”(c)-+O. 

In [2] the solution was accomplished digitally, and the 
results presented in Table 3 and Figs. 13-15. Table 3 
displayed the values found for the “missing” initial conditions 
p(O), p(O) and g(O), for nine combinations of Se and Y_.,~; it 
also showed spot values for the velocity F’ and concentration 
4 at 6 = 1. Ail values were quoted to ftve figures of precision. 

In this note, values are reported for these quantities which 
differ considerably horn the values in [2]. In the interest of 
brevity, the comparison is limited to the values for only three 
combinations of the parameters SC and y,,; see Table 1. 

As is evident, the results initially reported are substantially 
in error. For example, the average ma~itude of the error in 
the velocity f”(l) is 498 % and the average magnitude of the 
error in the concentration &I) is 12.5 %. The results surely do 
not warrant five figures of precision when they are subject to 
such errors. 

The principal reason for the errors is clear from Figs. 13 and 
14 of [Z]. The authors failed to run the solutions out to a 
sufficiently large value of i. They presumed that ;i = 4 was 
adequate to meet the conditions as tj’- rx;, but the analog 

Table 1. Comparison of results 

For Sc = 2.5 and y,, = 0.0005 

P(O) p”(0) +x0) F’(l) 6;(l) 

From [Z] - 0.41244 0.50482 - 0.33589 0.30402 0.66758 
Analog results - 0.586 0.887 - 0.410 0.598 0.593 

For SC = 2.5 and y10 = 0.1 

F-(O) f”(O) dm F’(l) m 
From [Z] - 0.40811 0.50885 - 0.3 1797 0.30903 0.67979 

Analog results - 0.579 0.889 - 0.383 0.604 0.615 

For Se = 100 and yAa = 0.01 

P‘(O) F”(O) &Oi I”(l) 8;(l) 

From [ZJ - 0.39484 0.48975 - 0.33272 0.29785 0.67010 
Analog results - 0.533 0.879 - 0.418 0.614 0.586 
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FIG. 1. Analog solution for SC = 2.5 and yAo = 0.0005. 

computer - which allows immediate expansion of the ? 
interval-revealed that i = 10 was required in this problem. 
Figure 1 displays the solution for the principal case of 
SC = 2.5 and yAO = 0.0005, which provides the comparison 
with experimental results. It is clear from this that the 
asymptotic approach of 4, F’ and F” to 0 is met at f = 10. 

On the analog computer, when solutions were NII out to a 
value of only 4 for ij the results of [Z] were essentially 
duplicated. At this inadequately low value for f, the three 
functions concerned are not asymptotically approaching 0, 
but have been forced to spot values of exactly xero - see Figs. 
13 and 14 of [2]. 

3. REVISEDCDMPARISDN OFTHRORETICAL 
AND EXPERIMENTAL RESULTS 

In Fig?15 of [2], the authors compared their numerically- 
produced results with experimental results of four separate 
investigations, and concluded that the results were in close 
agreement. With the modified value for $‘(O) of - 0.410, the 
correlation equation (56) yields now 

Sh = - ; (Gr, SC)“’ d’(0) = 0.6833 (SC Gr,)“‘. 

Figure 2, a revision of Fig. 15 of [2], shows this corrected 
correlation line. The agreement between theoretical and 

experimental results is obviously enhanced by the correction 
of the error in the solution. 

It should also be noted that the scale for Sherwood number, 
as published at Fig. 15 of [2]. is wrong by a factor of 10. 

4. ANALOG PROGRAM AND CIRCUIT 
Using the method of normalised variables for magnitude 

scaling, expected maximum magnitudes were chosen to be 

p; = 0.6, F; 5 1, F; = 0.7, F, = 3, 

& = 0.5, 4, = 1, rim = 10. 

Normalisation to those values produces the scaled equations 

-(;)= -f[-3.333(&X$-0.72(;@ 

- O.O933(;)(-&)]dr - (;),_,, 

(;)= -0.6jb-(;)dr+(;),_. 

- (-&) = - L-f;(;)dr -@:; 

(;) = - 0.2333j; - (;)dt + 0.0001390(~),_0, 

-(&)= -1.*16-(~~~)dt-(~),_~. 

(f)= -0.5(6-(,&)dr+fll 

0 I 
’ ‘-Oldt - =- 
10 

. . 
0 

for which the analog circuit is given in Fig. 3. 
Because of the nonlinearity and the fact that three “initial” 

conditions are missing, it is best to conduct an exploratory 
run with all the variables deliberately overscaled by a 
considerable factor. With this extra room for manoeuvre, one 
can attain the solution more readily. Having discovered 
preliminary values for the three missing initial conditions, one 
rescales in accordance with the maxima just discovered and 
runs again in order to increase the accuracy. This is the 
procedure followed here, and the equations above are the 
final, resealed, version. 

Since the terminal value for F’ was most affected by the 
initial value for F, an automatic iteration circuit was 
incorporated using a memory-pair and integrator No. 8, 
cycled between HOLD and OPERATE. This circuit adjusted 
T’(O) continuously to maintain P”(l0) = 0. The subsequent 
adjustment of potentiometers No. 1 and No. 2 manually, in 
order to meet the other two downstream conditions, was 
readily accomplished without the further elaboration of 

_----__ Experimental dota 
-.-__ Digital results from [Zl 

Analog results 

100 I I 
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SC Gr, 

Ftc. 2. Revised comparison of theoretical and experimental results. 
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1 A K, K, KS K, KS Ks K, K8 KS 

Slow 10s 5s 0.72 3.333 0.0933 0.6 1.429 02333 I.8 0.5 0.1 0.03 

Fost 2ms lrm36OO 16667 467 3000 7150 I 167 9000 2500 500 I50 

FIG. 3. Analog circuit for SC = 2.5 and yAO = 0.0005. 

additional iteration circuits. 
Figure 1 was recorded in SLOW mode, the run time of 10s 

being suitable to the recorder. By going to FAST mode, the 
complete solution was accomplished 333 times/s, yielding a 
static set of curves on an oscilloscope. 

A convincing case has been made for the use of analog 
computers in problems of this nature. The preparatory time 
in scaling, programming and implementing the solutions is 
certainly no more than is involved in a digital treatment. The 
accuracy achieved (around 0.25 %) is perfectly acceptable for 
any practical purpose, while the run time is dramatically 
shorter. Even with a small-scale, medium-speed machine like 

the EAI 380, the solutions can be repetitively displayed 
hundreds of times/s. By alteration of the appropriate 
potentiometer(s), the effects of varying a parameter such as SC 
or yAo c8n be immediately observed. 
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